Adaptive estimation of stationary Gaussian fields
نویسنده
چکیده
We study the nonparametric covariance estimation of a stationary Gaussian field X observed on a regular lattice. In the time series setting, some procedures like AIC are proved to achieve optimal model selection among autoregressive models. However, there exists no such equivalent results of adaptivity in a spatial setting. By considering collections of Gaussian Markov random fields (GMRF) as approximation sets for the distribution of X , we introduce a novel model selection procedure for spatial fields. For all neighborhoods m in a given collection M, this procedure first amounts to computing a covariance estimator of X within the GMRFs of neighborhood m. Then, it selects a neighborhood m̂ by applying a penalization strategy. The so-defined method satisfies a nonasymptotic oracle type inequality. If X is a GMRF, the procedure is also minimax adaptive to the sparsity of its neighborhood. More generally, the procedure is adaptive to the rate of approximation of the true distribution by GMRFs with growing neighborhoods. Key-words: Gaussian field, Gaussian Markov random field, model selection, pseudolikelihood, oracle inequalities, Minimax rate of estimation. ∗ Laboratoire de Mathématiques UMR 8628, Université Paris-Sud, 91405 Osay † INRIA Saclay, Projet SELECT, Université Paris-Sud, 91405 Osay in ria -0 03 53 25 1, v er si on 2 1 Se p 20 09 Estimation adaptative de champs gaussiens stationnaires Résumé : Nous étudions l’estimation non-paramétrique d’un champ gaussien stationnaire X observé sur un réseau régulier. Dans le cadre des séries temporelles, certaines procédures comme AIC réalisent une sélection de modèle optimale parmi les modèles autorégressifs. Cependant, il n’existe aucun résultat analogue d’adaptation pour des champs spatiaux. En considérant des collections de champs de Markov gaussiens comme des ensembles d’approximation de la distribution de X , nous introduisons une nouvelle méthode de sélection de modèle pour des champs spatiaux. Pour tout voisinage m dans une collection M donnée, cette procédure estime la covariance de X par un champ de Markov de voisinage m. Puis, elle sélectionne un voisinage m̂ grâce à une technique de pénalisation. L’estimateur ainsi défini satisfait une inégalité oracle non-asymptotique. Si X est un champ de Markov gaussien, la procédure est minimax adaptative à la taille de son voisinage. Plus généralement, nous prouvons que la procédure s’adapte à la vitesse d’approximation de la distribution de X par des champs de Markov gaussiens de voisinage croissant. Mots-clés : Champ gaussien, champ de Markov gaussien, sélection de modèle, pseudovraisemblance, inégalités oracles, vitesse minimax d’estimation. in ria -0 03 53 25 1, v er si on 2 1 Se p 20 09 Estimation of stationary Gaussian fields 3
منابع مشابه
A ug 2 00 9 Technical appendix to “ Adaptive estimation of stationary Gaussian fields ”
This is a technical appendix to “Adaptive estimation of stationary Gaussian fields” [6]. We present several proofs that have been skipped in the main paper. These proofs are organised as in Section 8 of [6]. AMS 2000 subject classifications: Primary 62H11; secondary 62M40.
متن کاملADAPTIVE ESTIMATION OF STATIONARY GAUSSIAN FIELDS BY NICOLAS VERZELEN1 INRA and SUPAGRO
We study the nonparametric covariance estimation of a stationary Gaussian field X observed on a regular lattice. In the time series setting, some procedures like AIC are proved to achieve optimal model selection among autoregressive models. However, there exists no such equivalent results of adaptivity in a spatial setting. By considering collections of Gaussian Markov random fields (GMRF) as a...
متن کاملAn Adaptive Hierarchical Method Based on Wavelet and Adaptive Filtering for MRI Denoising
MRI is one of the most powerful techniques to study the internal structure of the body. MRI image quality is affected by various noises. Noises in MRI are usually thermal and mainly due to the motion of charged particles in the coil. Noise in MRI images also cause a limitation in the study of visual images as well as computer analysis of the images. In this paper, first, it is proved that proba...
متن کاملThe Time Adaptive Self Organizing Map for Distribution Estimation
The feature map represented by the set of weight vectors of the basic SOM (Self-Organizing Map) provides a good approximation to the input space from which the sample vectors come. But the timedecreasing learning rate and neighborhood function of the basic SOM algorithm reduce its capability to adapt weights for a varied environment. In dealing with non-stationary input distributions and changi...
متن کاملA Robust Distributed Estimation Algorithm under Alpha-Stable Noise Condition
Robust adaptive estimation of unknown parameter has been an important issue in recent years for reliable operation in the distributed networks. The conventional adaptive estimation algorithms that rely on mean square error (MSE) criterion exhibit good performance in the presence of Gaussian noise, but their performance drastically decreases under impulsive noise. In this paper, we propose a rob...
متن کامل